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INTRODUCTION

Let

](z) = L amzm
rn=()

(I)

have a radius of convergence ao (0 < ao ~ + 00).
The entries of the Pade table of (1) are ratios of polynomials which may be

represented explicitly in terms of the Hankel determinants introduced
below.

Let (m, n) be a pair of nonnegative integers; put

and consider the determinants

(j = 1,2,3,... ) (2)

am am - 1 am- n-d
A(n) arn+1 am am- n+2

m

am+n - 1 Grn -t-n-2 am

Gj Gj_l Gj_2

am--l-1 G,..n Gm- 1
W~n+1)(j) -- am -+- 2 Gm+1 G1'H

aj - n

Gm - n +1

Gm - n +2

1, (3)

(4)

and the polynomials

1 z Z2 zn

Gtn+1 Gm Gm- 1 am- n+1

Dmn(z) am + 2 Gm+1 am am - n +2 Dmo(z) = 1. (5)

arn+ n Gm-t-n--l Gm+n- 2 am
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With the above notations, the fundamental identity

55

m

fez) Dmn(z) - L W,~n+l)(j) Zi = L w~n+l)(j) zi, (6)
j=O j=m+n"+-1

constitutes a natural starting point for the study of Pade approximation.
It is obvious that the radius of convergence of the series in (6) is at least equal
to the radius of convergence of the original series (1). It is often useful to
express the right-hand side of (6) as a contour integral [5; pp. 436-437] and
to use the resources of function theory to obtain its analytic continuation.

This aspect of the question need not concern us here since we always assume
that fez) is entire.

Some additional notations will simplify our exposition. Put

WmnCz) = f W;~+l)(j) zi.
j~O

(7)

Whenever A~) # 0, we also introduce the normalized Pade polynomials

Wmn(z) m

Pmn(z) = A(n) == L Pi(m, 11) zi (Pmn(O) = ao),
m 'i~O

(8)
Dmn(z) n

Qmn(z) =
Aln) = L qiCm, n) Zi (Qrnn(O) = I).

m j~O

For our purpose the coefficients of the leading terms of PrnnCz) and Qmn(z)
are important:

A (n+l)
Pm(m, n) = A<n) ,

m

A
(n)

( . m+1
qnm,n) =~.

m

(9)

The Pade polynomials Pmn , Qmn are obvious generalizations of the notion
of partial sum (or section) of the power series (1). One may expect that the
distribution of the zeros of the Pade polynomials will be described by
theorems analogous to the classical results of Jentzsch, Szego, Carlson and
Rosenbloom.

I have shown elsewhere [6] that, if ao < + 00, that is if the series (1) has a
finite radius of convergence, the analogy with the theorems of Jentzsch and
Szego is complete.

Ifj(z) is entire (ao = + 00) the corresponding questions cannot be treated
as easily.

The main difficulty is to find (for suitable values of m and n) good lower
bounds for I A~) I as well as good bounds (from above and from below) for
I A~+11IA~~) I.
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In order to obtain such bounds, 1 consider, beside 0), all the power series

fn(z)
fj

" A (n)~111i..J m':"

lH=O

(n = 1,2,3,...) (10)

and apply to each one of them the Wiman-Valiron theory of the maximum
term.

The key lemma of my investigation may be stated as follows.

LEMMA 1. Let fez) be entire and transcendental.
Denote by JLn(r) the maximum term of the series in (10), that is

max(1 AJn) I r;) = JLn(r),
J

and write JL(r) instead of JLk).

L Then, for all r > 0, we have

(1I)

(n = I, 2, 3,...). (12)

11. With every integer n ;): I, it is possible to associate an exceptional set E
(offinite logarithmic measure) such that

JLn(rn) ;): (JL(r))n(log JL(r))-n(n-l)j2(log log JL(r))-5n(n-.ll j2 (r 1: E). (13)

Remark 1. As an immediate consequence of (12) and (13), we obtain

log JLn(rn) "'-' n log JL(r) (r -->- 00, r 1: E). (14)

It is easily deduced from the above relation that, if fez) is of order exactly ,\
(0 ~ ,\ ~ +00), thenfnCz) is of order exactly ,\fn.

Remark 2. In the special casef(z) = eZ
, Stirling's formula and the explicit

values of the Hankel determinants [1; p. 12, formula (3.7)]:

A(n)[eZ ] = A(n) = TI (k - I)!
m 111 7c~1 (m + k - 1)!

lead to the relations

(m ;): n ;): I),

K~{log JL(r)}n(n-ll j2 ~ {JL«r)~')' ~ K~{log JL(r)}nln-ll j2
JLn r

(r > ro(n»,

where K~ and K: are positive constants depending only on n.
This shows that the inequality (13) is not far from best possible.
Lemma 1 leads to my main
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THEOREM 1. Let (1) represent an entire function of order A. (0 < A. :s;; +00.

Then, with every n ? 1, it is possible to associate an unbounded sequence Sen)
of strictly increasing, positive integers which behaves as follows.

I. For m E Sen) we have

(I 5)

II. Let CPI and CP2 be given (CPI < CP2 < CPI + 27T) and let N(m; CPI, CP2)
denote the number of zeros of Pmn(z) in the angle

CPI :s;; arg z :s;; CP2 .

Then, if A. < + 00, we have

N(m; CPI , CP2) ? mQ

where we may choose

(m ES(n)),

w = exp ( 7T{9 + (3jA.)} ).
CP2 - CPI

(16)

(17)

III. IfA. = + 00, the inequality (16) may be replaced by the equidistribution
relation

_N---,(:-m--,-;_cp'--.:I'--"---,CP-,-2::.:...) -+ CP2 - CPI
m 27T

(m ->- 00, m E Sen)). (18)

IV. For 0 < A. :s;; + 00 it is possible to associate, with each m E Sen),
a radius Rm. such that, as m -+ 00, m E Sen), we have

as well as

Rm -+ +00

Rm > ml/(A+<l

(A. = +00),

(A. < +00, E > 0, E arbitrary),
(19)

(e i / il = I, if A. = +00). (20)

The quantity A, which may depend on the choice ofSen), satisfies the condition

(e i
/ il = 1 for A. = + 00). (21)

If A. =, + 00 and YJ > 0 is given, there are, as m -+ 00 (m E Sen)), no more
than oem) zeros of Pm.n(z) in each one of the regions

(22)
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(23)

If A < + 00, (22) is unaffected but it is necessary to replace (23) by

I z I ~ R'm, (24)

where {R;"} is any positive sequence such that (R;";Rrn) --* 0 (m --* 00, m E S(n».

V. If A < + 00, there are no more than

III

T A log(1 +- YJ) (I + 0(1»

zeros of Pmn(z) in the disk

(m --* 00, m E S(n»,

(YJ > 0).

(25)

The remarkably precise form of assertion III is obtained by applying, to a
suitable sequence of polynomials, a classical result of Erdos and Tunin [9].
The method yields more than has been asserted above and leads to the
following modified form of assertion Ill:

IlIa. If 'P2 - 'PI > 0 is given, and if

then

2

A 2(32)2 -(7T ~)2 '
'P2 - 'PI

(26)

(m E S(n), m > mo). (27)

If A is small (in the sense that (26) is violated) the theorem of Erdos and
Turan may no longer be applicable. In this case, we use instead, in exactly
the same way, the less precise Theorem 3 (stated at the end of this
]ntroduction).

Theorem I above does not guarantee the existence of large disks in which
some sequence of approximants of the nth row of the Pade table converges
to the entire function l(z). Suitably adapted, the arguments which lead to
Theorem 1 also yield

THEOREM 2. Let l(z) be entire, transcendental, offinite order ,\ ;~, 0, and
let n ? I be an integer such that

o < I _ A n(n - 1) = ~ ~ I.
2

(28)
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It is then possible to find an infinite sequence yen) ofpositive, strictly increasing
integers having the following properties.

I. If"\ > °and mE yen), then

(29)

throughout the disk

(30)

In the smaller disk

we have

[fez) Qmn(Z) - Pmn(Z) I ~ exp(-m + m</2).

(31)

(32)

I I. If ,\ = 0, the quantity m«3\ which appears in (29), (30) and (31), may be
remlaced by mB , with B > °(B is otherwise arbitrary). Theform of(32) is not
affected.

The convergence properties of the rows of the Pade immediately follow
from Theorem 2. We thus find

COROLLARY 2. I. If"\ = 0, we may, with each n ? 1, associate a sequence
yen) such that

I/(z) ~ ~mn(Z) I ~ exp( -111 + 1111/2),
, Qmn(Z)

(33)

provided
111 E Sen). (34)

It is clearly possible to state a similar Corollary for the positive values of ,.\
which satisfy (28).

The first two rows of the Pade table of an entire function were successfully
investigated by Baker [2]. Theorems 6 and 8 of Baker's paper are essentially
equivalent to the assertions concerning n ~~ I and n 2 in Theorem 2
of the present paper.

Baker [2; p. 523] conjectured the possibility of studying the convergence
of all the rows of the Pade table of an entire function. Theorem 2 above
shows that, with simple limitations on the order off(z), it is possible to carry
out Baker's program.

Theorems 1 and 2 require no regularity assumptions concerning the
growth of fez) or the coefficients of its expansion.

It is to be expected that suitable regularity restrictions will make it possible
to eliminate the sequences Sen) and yen) from Theorems 1 and 2 and to
assert, instead, that inequalities such as (16), (29) and (32) hold for all
sufficiently large values of m.
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A striking illustration of the implications of regularity may be derived
from the study of special choices of l(z). Among the noteworthy examples
of this kind, I mention the elegant and very precise results of SalT and Varga
[13] concerning the zeros of the Pade polynomials associated with the
exponential function.

My proof of assertion II of Theorem I makes essential use of the following

THEOREM 3. Let

be a polynomial such that

and such that

(0: ~ 0, m ?C' I), (36)

max I T(z)] ~ eml!
Izl~1

(0 < 'Yj). (37)

Denote by A/' the number of zeros of T(z) in the angle

Define

'fI arg z "'; 'f2 (0 < CP2 - CPI = ; , y > ~).

Then, if

we have

( )
= .~ I sin(7T/12y) lW

K 0:, Y 4 I 11 + 30: I

'Yj ~ K,

(w = exp(y(20: + 9»). (38)

(39)

(40)

THEOREM OF ERDOS AND TURAN. With the normalization and notations
of Theorem 3:

I~ - 2
1
y I< 16 hk- 10g(1 + I t1 ! + I t2 ! + ... + I till !):- ; 11

/

2

•

(41 )

In the above inequality the logarithm is necessarily positive, hence (41)
will only give a non-trivial lower bound for %/m provided

0: < 2(32y)-2.
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The validity of Theorem 3 is not restricted by a condition of this type.
On the other hand, a comparison of (40) and (41) shows that the value of K

(given by (38)) is strikingly unfavorable.
Results having the same general character as the above Theorem 3 were

discovered and announced by Carlson [3], in 1924. He did not publish his
proofs before 1948 [4]. The first proofs to appear in the literature were given
by Rosenbloom [11] in his remarkable thesis (1943). A summary of some of
his results and proofs will be found in [12]. The theorem of Erdos and Turan
[9] was published in 1950.

For the convenience of the reader I sketch a brief proof of Theorem 3
based on Rosenbloom's ideas. The use of an identity of Edrei and Fuchs
[8; pp. 144-145] leads without difficulty to the simple explicit bound
expressed by (38) and (40).

1. TERMINOLOGY AND NOTATIONS

Sets E, of finite logarithmic measure, play an important role in this paper.
By definition E, which is a set of values of the positive quantity r, satisfies
the two following conditions:

(i) it is a measurable subset of the interval

1 ::s;; r < +00;

(ii) IE (dr/r) < +00.

By Kn , I denote a positive constant which only depends on the integer
n ;?: 1 and on no other parameters (neither explicitly nor implicitly).

By {YJm}m, I denote a sequence (not necessarily positive) such that

'Y]m~O (m ~ (0).

Symbols such as (r > ro), (m > mo), ... following some relation, mean that
the relation in question holds for sufficiently large values of the parameters
r,m, ... .

The symbol E does not represent the same set at each occurrence. Similarly
K n , {'Y]m}, ro , mo ,... , may have different values in different places.

It is essential for the understanding of the following proofs to bear in mind
that our conventions imply that the union of a finite number of sets E is still E
and that r rt E and rn rt E are equivalent assertions.
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2. POWER SERIES WHOSE COEFFICIENTS ARE HANKEL DETERMINANTS

In everything that follows (J) defines an entire transcendental function.
We denote by p.(r) and vCr), respectively, the maximum term and the central
index of the expansion (1):

p.(r)

and ~(r) is the largest integer.i

Since

max {i a j r J:.
O<j· ,

osuch that

( '.j
I aj I I .

we have, as in Lemma I stated in the Introduction,

The elementary identity [10; p. 5, ex. 33]

l' (t)
log p.(r) -- log fL(J) c.= r _v- dt.

'I t

is fundamental and will be taken for granted.

(2.1)

LEMMA 2.1. Let fez) be entire and transcendental. The determinants
w~n+])(j), DmnCz) and the polynomial Wmn(z) defined by (4), (5) and (7) satisfy
the following relations.

I. For any I' > 0 and any nonnegative integers m, n, j, we have

W(n~])(. ,), <'~ (' ..!- 1)"11 ( ( ))".1.1 .··lI!1l-j
'" /i~1I fLr I •

which imply

()
n']

I A(n+l) I :< (n .( .. I)nH (~-) .
. m ,~- '" r m ,

and

(2.2)

(2.3)

II. If in addition, we assume 0 ~ t < r, then

max if(z) Dmn(z) - W",,lz)i
1=1<;1

(n n .. l (fL(r).)"'] (t)'" 1/I) . -~--- -
,11111 , r , r ---- f

(2.5)
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We also have

I D () A (n) I ::::::: nn ( fLr(mr) )n -rt (1 + -rt)n-1,max mn Z - m "'"
Iz!';:;t

63

(2.6)

for t > 0, and without the restriction t < r.

III. Each one of the functions fiz) in (10) is entire and transcendental.

Proof. Number the rows and columns of the determinant W:,.n+ll(j)
from (I to n. Multiply the lth row by rm-n+t and perform this operation for
I = 1,2,3,... , n. [The Oth row remains unaltered.]

Similarly multiply by rn- Ie the kth column of w:,.n+ll(j) (k = 0, 1,
2, ... , n - 1).

These operations transform the lth row of W:,.n+ll(j) into

am+lr"n·l·l" am+l_lrnl-t-l-l, ... , am+l_nrm+l-n

and the Oth row into

(l> 1) (2.7)

(2.8)

The sum of the moduli of all the terms in (2.7) cannot exceed

(n + 1) fL(r).

The analogous sum formed with the members of (2.8) cannot exceed

It is now obvious that

(2.9)

and (2..2) follows.
The above inequality could be slightly improved by the use of Hadamard's

estimate of the modulus of a determinant; such an improvement would not be
reflected in our Theorems 1 and 2.

The inequalities (2.3) and (2.4) immediately follow from (2.2) and from
our definitions (3) and (7). Taking (6) into account we also obtain (2.5).

To prove (2.6), we consider

0 Z Z2 zn

am+1 am arn - n +1

am+2 am am- n+2 = Dmn(z) - A(n)
In

am+n am+n - 1 am
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instead of W::'i+lJ(j). The arguments which lead to (2.9) now yield

n

r(m+l)n I Dmn(z) - A~~) I < nn(fL(r)t Liz Ik rn- k

k~l

and (2.6) follows.
To prove assertion III of the Lemma, notice that (2.3), with rand n fixed,

implies

lim sup I A~+l) 1

11m < r-n - 1

m~oo

(n ~ 0). (2.10)

Since r > 0 is arbitrary, the right-hand side of (2.10) may be replaced by O.
Hence fn+l(z) is entire. It cannot reduce to a polynomial. Otherwise, by a
known property of Hankel determinants [10; p. 103, ex. 23], we would
conclude, against our assumption, thatf(z) is a rational function.

The proof of Lemma 2.1 is now complete.

3. ApPLICATION OF THE RESULTS OF WIMAN-VALlRON

We make use of the very simple form given by Saxer [14; pp. 210-219]
to the results of Wiman-Valiron. Throughout the remainder of this paper
fLn(r) and vir) denote, respectively, the maximum term and the central
index of the series definingfn(z) (in (10)).

In addition to the results of Wiman-Valiron our proofs require the fol­
lowing modified form of a growth lemma of E. Borel.

LEMMA 3.1. Let G(r) ~ e be a nondecreasing, unbounded function defined
for all r ~ ro ~ 1.

Then, if r lies outside a suitable exceptional set E, of finite logarithmic
measure, we have

G (r II + {log ~(r)pD < eG(r) (r ¢= E).

Proof The preceding statement follows immediately from a known lemma
of Edrei and Fuchs. Adopting the notations of [7], we apply [7; p. 339,
Lemma 10.1] with

ep(x) = log G(eX
), c = 1

and express the resulting inequalities in terms of the variable r = eX.

As pointed out by an anonymous referee, Lemma 3.1 follows, just as
simply, from a result of R. Nevanlinna [Bull. Sci. Math. 55 (1931), 140-144].

We now prove Lemma 1 stated in the Introduction.
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Proofofassertion I. From (2.3) we deduce

(rnr I A;:) I :'( nn(/l-(r)t,

where r > 0 may be chosen arbitrarily. With the particular choice

65

(3.1)

(3.2)

(3.1) reduces to (12).

Proof of assertion II. In order to apply the lemma of Wiman-Valiron
we set

(j = 0, 1,2,3,...)

and let the integer n ~ 1 be fixed. The function

of)

Set) = L ex;t;
;~o

is, by assertion III of Lemma 2.1, an entire function of the auxiliary variable t.
Introduce the sequence

7Tm +l = TI (1 + (l 1 )2)
;~2 j ogj

(m = 2, 3, 4, ...). (3.3)

The sequence {7Tm } thus defined is to some extent arbitrary; for our purpose it
is important to note that

7T
m

+1 > 1 (m = 3, 4, 5,...),
7Tm

Our notations and (3.2) imply

m = vii t I)

lim 7Tm < +<Xl.
m--HX)

and the inequalities of Wiman-Valiron are valid if

(3.4)

where E is a suitable set (of values of I t I ~ 1) of finite logarithmic measure.
By definition, our notations yield
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and, by the lemma of Wiman-Valiron [14; pp. 213-216],

7TI (\~m-I-l I t ili/i-l < __'m __ I CXm I I t lUI
7Tm -t-l

The latter inequality, which we put in the form

(I t I $ E).

1 A~~:l I r(m+l)n <~ I A~') I rmn,
1Tm -t-l

(3.7)

is, in different notation, the first of the inequalities II, p. 213, of Saxer's
statement [14].

From (3.6) and (3.7) we deduce

I A(n) A(n) I <:~ I A(n) 12
I tn-I rn+l -.....:::::: m'

7Tm +l

whic4 we use in the fundamental identity [10; p. 102, ex. 19]

We thus find

(3.8)

and, in view of (3.3),

(3.9)

Hence, using (3.5), we find

Put

(r t/= E). (3.10)

G(r) = log f-Ln(r),

By (2.1) and Lemma 3.1

r
R = r + (log G(r»2 .

R-r
vir) -R- < (e - 1) G(r)

and hence, by (12) (already proved),

(r ¢= E),

(r t/= E). (3.11 )
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From (3.10) and (3.11) we deduce

where we may choose

K(r) = -log log fL(r) - 5 log log log fL(r).
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(r 1= E),
(3.12)

The first member of (3.12) has the character of a second difference; moreover,
with a proper definition of E, and the convention

inequalities such as (3.12) are simultaneously valid for

n = I, 2, ... , N - I (2 :« N < + 00, E = E(N)).

Performing two successive summations, we deduce from (3.12)

n(n - 1)
log fLn(rn) > n log fL(r) + 2 K(r) (r rt E),

and (I 3) follows. The proof of Lemma 1 is now complete.

4. BOUNDS FOR THE MAXIMUM MODULUS AND FOR THE LEADING TERM

OF Pmiz)

LEMMA 4.1. Let the notations and assumptions of Lemma 1 be unchanged.
Then, taking

we have A~7) =F 0, and

r rt E, (4.1)

r m , Ai~:~) I ;? ffLn(rn)}1/n (log fLn(rn))-Kn m-2• (4.3)
m

Proof By (4.1), m is a central index of the expansion of fn(z); hence
A~~) =F O. By (8) and (2.4)

%y:~ I Pmn(z)1 = VI~~' W;f~Z) I

<: ( + I) K (fL(r))n+l = (m + 1) K (fL(r))n+l
"" m n I A~) I r mn n fLn(rn)

(4.4)
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Similarly, by (3.9),

(r rt E),

A (n+l)

m I m I ( n-l):> -2 (n)r ~ fLn-l r /' m fLn r
m

and taking (12), into account, we deduce

(r rt E),

(r rt E). (4.5)

Using (12), (13) and (14) in (4.4) and (4.5), we obtain (4.2) and (4.3).
This completes the proof of the lemma.

5. PROOF OF THEOREM 2

An inspection of (28) shows that it is always possible to determine y such
that

1 _ ,.\ n(n - 1) ~ c
Y 2 > 10 s, y>l. (5.1)

Having thus selected y we deduce from Lemma 1 the existence of some
exceptional set E that, for r rt E, (13) holds in the form

(r rt E), (5.2)

and (14) in the form

(r --+ 00, r rt E). (5.3)

By the definition of order it is possible to find a function 7](r) such that

and

7](r) > 0, 7](r) --+ 0 (r --+ (0), (5.4)

We now choose

(5.5)

(5.6)
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and, from the identity (2.1) deduce

Using (5.3), (5.5) and (5.6) in (5.7) we find
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(1' > 1'0)' (5.7)

2111(1') & --log fL(2r) & 2~+2r~+11(r)
'--'" log 2 '--'"

Select

(1' ¢ E, l' > 1'0)' (5.8)

so that, by (5.8),

(5.9)

(1' > 1). (5.10)

From (2.6)

1 Q (z) - 1I ~.!- (1 + -.-!-)n-1 nn (fL(r))n
mn l' l' fLn(r n) (I z 1 ~ t),

and hence, choosing t as in (5.9), and taking (5.2) and (5.10) into account,
we find

t
1 Qmn(z) - 1 I ~ r KnOog fL(r))yn(n-1l/2 (1' ¢ E, I z I ~ t). (5.11)

We now use (5.5), (5.1) and (5.10) in (5.11); this yields

(1' ¢ E, l' > 1'0' I z I ~ t). (5.12)

To eliminate r from (5.12) we use (5.8) and obtain

I Qmn(z) - 1 I ~ 24(H2l</9(~+11(r»m-M/9(~+11(r» ~ m-7</18("+11(r»

(I z I ~ t, m = m(r), r f/= E, m > mo). (5.13)

The relations (5.13) also hold (by (5.9)) for

(5.14)

Let {l'IJk=l be any positive sequence tending to infinity by values such that
rkf/=E.

The corresponding values m(rk), defined by (5.6), determine our sequence
Y(n).

If ,\ > 0, if mE Y(n), and if m > mo , the inequality (30) implies (5.14).
Hence (5.13) holds and (29) follows.
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To prove (32), consider the fundamental relation between P",iz) and
Qmiz), expressed as a contour integral [5; pp. 434-437]:

Take 'l/ to be the circumference

I '1 = m</3'

and

Notice also that, by (29),

and by (5.5) and (5.16)

(5.16)

(5.17)

(5.18)

(m > mo). (5.19)

Using (5.16)-(5.19) in (5.15), we obtain, by the familiar estimates for contour
integrals,

and (32) follows since n ;;:: I.
To treat the case ,\ = 0 it suffices to set ,\ = 0 in (5.5), (5.8), (5.9), (5.13)

and (5.14). We now have g = 1 and we may choose y = 2; the relation (5.16)
is to be replaced by

and this value of I , I is to be used in (5.17).
The inequality (5.19) now takes the simple form

The preceding considerations lead almost immediately to assertion II of
Theorem 2 and to the Corollary 2.1.

6. TIfE RATIO log fL(r)fv(r)

LEMMA 6.1. Let l(z) be entire, of order ,\ (0 < ,\ :::;; + (0) and let fL(r)
and v(r) be the maximum term and central index of the expansion (1) of l(z).



Then
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(6.1)

In the case,.\ = + 00, the right-hand side 0/(6.1) is to be interpreted as o.
Proof ForA < + <Xl the inequality (6.1) is contained in ex. 60 of [10; p. 9]
For ,A = + <Xl we may argue as follows. The definition of the central index

shows that vet) is constant on each interval

(j = 1,2, 3,...), (6.2)

where (Tj}1=l is a strictly increasing, positive unbounded sequence. Hence,
given K > 0, we have, in each of the intervals (6.2),

vet) < V(Tj) _
(k- ~ T·K - pj .

J

(6.3)

The sequence {Pj}1=l thus defined is unbounded because otherwise there
would exist an M (0 < M < + <Xl) such that

vet) ~ MtK

and, by (2.1), this would imply that the order of fez) does not exceed K.
Hence it is clearly possible to find an infinite sequence

of positive, strictly increasing integers such that, if j E J, we have

(l ~ k ~j). (6.4)

From (6.3) and (6.4) we conclude that

()
__ KV(Tj)

vt"""t-K­Tj
(6.5)

Using (6.5) in (2.1) we find

TI

log /-L(Tj) ~ log /-L(Tt) + V(Tj) TjK f tK- 1 dt
T1

1
. log /-L(Tj) __ 1
1m sup () """ K .

/ ....HI) V Tj
JEJ

640/28/1 ..6

(6.6)
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Since ;\ 00, the argument may be repeated for arbitrarily large values
of K and we thus find

lim inf log fL(r) = o.
r>'fJ v(r)

It is obvious that with minor modifications the same reasoning leads to
(6.1) in the case ;\ < + 00.

The presence, in Lemma 4.1 of the exceptional set E makes it necessary,
for the applications that we have in mind, to formulate

LEMMA 6.2. Let the notations and assumptions ofLemma 6.1 be unchanged
and let I) > 0 be given.

It is then possible to find a positive, strictly increasing, unbounded sequence
{tj}~l such that, in each one of the intervals

(j = 1,2,3,...), (6.7)

we have

log fL(t) .~ ! + I)
vet) ~;\ .

Proof From Lemma 6.1 we deduce the existence of {t j} such that

(6.8)

(j = 1,2,3,... ). (6.9)

Then, by (2.1)

Since vet) ;? v(tj), (6.8) fol1ows from (6.9) and (6.10). The argument remains
valid in the limiting case ;\ = + 00.

7. SELECTION OF THE SEQUENCE Sen) OF THEOREM 1

Let n ;? 1 be a given integer which remains fixed throughout the proof.
The only entire function to be considered is fiz) whose order is exactly

;\/n (0 < ;\ ~ + 00). [This fact is established in the Remark following the
statement of Lemma I.]

All our inequalities are expressed in terms of fLn(rn) and vn(rn) and E is the
exceptional set such that for r rf: E, the relations (3.11), (4.2) and (4.3) are all
valid.
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Assume that the first k - 1 members of Sen)
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(k ~? 2) (7.1)

have been chosen.
Apply Lemma 6.2 to inez), with 0 = 11k. This establishes the existence of

infinitely many intervals

such that, if t n E lj , then

(7.2)

There are intervals I j with arbitrarily large initial points t/, and the loga­
rithmic measure of each I j is nj2k. Hence, it will be possible to find some I,
and some rk such that:

and, by (7.2),

(7.3)

Selecting

(7.4)

we define the element of Sen) which follows the initial elements (7.1). An
obvious induction enables us to complete the construction of the infinite
sequence Sen). We now define

(m = m,; E Sen»~ (7.5)

and eliminate k from all our formulae.
With the new notation, (7.4) becomes

(m E Sen»~, (7.6)

and (7.3) takes the form

(m E Sen»~, (7.7)

where

(7.8)
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From (4.3), (7.6) and (7.8) we deduce

I
A (n+l) I

Rm"' ~n(n) ~?: y~;n(log Ymr Kn m-2

J/I

(m E: S(n», 0.9)

and, from (4.2),

Cauchy's estimate, (7.10) and (8) imply

I
A(n+l) I

R",'" ;(n) ~ y;;n(log Ynfn (m + 1)
III

Define

and notice that (7.7), (7.9) and (7.11) yield

O 1· I I
~ 1m sup A ~~,

m~;(,,) m

and

(m E Sen)).

(m E Sen»~.

(m E Sen»~.

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

Considering if necessary a subsequence E(n) of Sen) we deduce from (7.13)

and from (7.14)

1
. 1 1
1m -A = A

m-+oo m
mEE(n)

(;\ ~ A ~ +(0), (7.15)

(m -- 00, m E E(n». (7.16)

We may now discard the sequence Sen) originally constructed and write Sen)
instead of E(n). With this new notation (7.10), (7.12) and (7.15) yield

The fact that

(m ---+ 00, m E Sen»). (7.17)

(m ---+ 00, m E Sen»~ (7.18)
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is an obvious consequence of its definition. For ,\ < + 00, we deduce from
(3. I I) an explicit lower bound for Rm :

(m > mo , 0 < E < I). (7.1 9)

8. PROOF OF ASSERTION'S I, II, III AND IlIa OF THEOREM I

Assertion I is an immediate consequence of (7.9), (7.II) and of our choice
of Sen).

It is convenient to introduce beside the polynomials Pmn(z), polynomials
Tm( D defined by the relations

where

mE Sen),

By (7.16)

By (7.9), (7.10) and (7.12)

lim I tmm 111m = e-1/A•
m->XJ

mES(n)

tmo = I. (8.2)

(8.3)

(8.4)

By Cauchy's estimate and our convention concerning K n , we deduce from
(8.4)

Put

m

'1\ I t I < mKnA,-nKn
L mj
j~O

(m E Sen), m > mo). (8.5)

I (m ) 1Cm = ~ log I I tmj I - -2 log I tmlll I;
m j~O ' m

by (8.3) and (8.5) we obtain

(8.6)
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Let CPl' CP2' N(m; CPl , CP2) be the quantities in the statement of Theorem I;
it is clear that N(m; CP1' CP2) is also the number of zeros of Trn(O in the angle

-72 arg , ~ -CP1

Proof of assertion HIa. We apply to Trn(O the Theorem of Erdos and
Tunin. Using (8.6), we see that (36) implies

(8.8)

where by (8.7) (and in view of our notational convention concerning 'l)rn)

Hence

(8.9)

The additional assumption (26) implies

A1/2 ::;c ,,1/2 > 32(2)1/2 y.

Consequently

(8.10)

and (27) follows from (8.9) and (8.10).

Proof of assertion Ill. By assumption A _c 00, so that (8.7) implies

{fll/ -+ 0 (m -~ 00, In E Sen)~.

Hence (8.8) yields (18).

Proof ofassertion II. We apply Theorem 3 to T",W.
By (8.4)

(8.11 )

and by (8.3)

A A O.
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An inspection of Theorem 3 shows that we may set in (36)

I
ex = Ctrn = A + 1)m

and conclude

77

(m E Sen)). (8.12)

It is now obvious that

(8.13)

with [J defined by (17).
Hence (16) follows from (8.12) and (8.13).
This completes the proof of assertion II of Theorem 1.

9. THE MODULI OF THE ZEROS; PROOF OF ASSERTIONS IV AND V OF THEOREM 1

The radii Rm were introduced in (7.5). The relations (7.18) and (7.19) yield
(19) and the relations (7.15) and (7.16) imply (20) and (21).

Consider the factored forms

(9.1 )

and

rn R
Tm(O =~ tmm IT (, - _zm ).

)~1 ]

From (9.2), Jensen's theorem and (8.11) we deduce

(9.2)

Hence, as m ---+ 00 (m E Sen)), there cannot be more than oem) zeros of Pmn(z)
in the regions (22).

Again, by Jensen's theorem, (9.1) and (7.17)

(m ---+ 00, m E Sen)~

and assertion V of Theorem 1 immediately follows.
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With insignificant modifications the same arguments enable us to verify
the assertions concerning (23) and (24).

The proof of Theorem I is now complete provided Theorem 3 is taken for
granted.

10. ESTIMATES FOR FUNCTIONS REGULAR IN A SECTOR

LEMMA 10. J. Assume that g(z) is regular in the angle

and let

Of:
__ 7T

i arg z I ~ 2c

For ufixed, let

i g(z)j :S; M(R) (z E Of, I z I :S; R). (10.1)

(u > 0, j3 > 0, I 8 I :S; 2:)' (10.2)

Assume also that, for some a > 0,

, 7T )
(8:S;2C' (10.3)

Then

where
(10.4)

B = eae + e-ae - 1.

Proof By [8; p. 145, formula (16)]

2 2o :S; - log(j3M1) + - (eae + rae - 2) log M 1
7T 7T

and (10.4) follows.

11. PROOF OF THEOREM 3

Let n be the number of zeros of T(z) in the disk

r = {z: I z I :S; -H

and let N be the number of its zeros in the sector

Ll = {z: I z! >l, Cf!l :S; arg z :S; <)J2},
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The normalization

7To < ({J2 - ({Jl = ­
y

(y > ~).

7T
--(PI =­

2y

is always possible and, from this point on we assume that it has been
performed.

By Jensen's formula, (37) and (39),

n log 2 ~ I log If-I ~ 7Jn1 ~ Km.
i'jl<1/2 _J

Hence, since K < 1/44,

In

n < 30'

We now introduce three auxiliary polynomials

(11.1)

(11.2)

(11.3)

(11.4)

T(z) h ( Z )
X(z) = U(z) V(z) = n I - g; = I + X1Z + X 2Z + ... + XhZh, (11.5)

and examine the behavior of X(z) under the additional assumption

N<mK.

By (11.2), (11.5) and (11.6) the exact degree of X(z) is

h = m - n - N > (0.9)m.

From (11.3) we deduce

min I U(z) I ;> I,
izl~1

and from (11.4)

min I V(z) [ ;> 2-N •
Izl~1 /4

(11.6)

(11.7)

(11.8)

(11.9)
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Combining (11.5), (I Us) and (11.9), we find, in view of (37),

max I X(z)! < 2N ma>i 1--vT((Z)) I
1=1-1/4 ,=1-1,4 Z

2N maxjT(Z)1 2lve"'''. (11.10)
=~_cl V(z)

For the coefficient of the leading term of X(z) we have

: .\Ii ! tNI

and hence by (36), (11.1), (11.6) and (11.7)

I Xli [ exp( -"Xm- Km - Km log 2)

exp(-(10/9) h('Y. -+ (1.7)K»). (lUI)

The polynomial X(z) has no zeros in the set

!f c= {r u L1};

consequently, the function g(z) defined by the conditions

I
g(z) = 7i log X(z), g(O) = 0, (11.12)

is holomorphic for Z E Ii'.
Bounds for I g(z)! in the angle

arg z
7T

31'

are immediate:

1 Ii , - . I IJ ,Z dl\'
g(z) = h i~ log (I -- i,) = /1 j~1 t lt~~7'

o Ii Iz:
g(z)i ~ Ii I i

j~l 0

dx I
sin(7T/ITYf),

2 z) B(fog 2 -- log+ 2 - ( 3:J-)'arg z ! I

(11.13)

By the Borel-Caratheodory inequality [15; pp. 174-175] and (11.\0),

i g(z)! ~;: 0 log(l

max log X(z)
z' <1/8

2 max log! X(z)! 2(N log 2 IIrq),= <-1 '4 .
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and hence by (39), (11.6) and (11.7)

max I g(z) 1 ~ ~/2 (1 -+- log 2) Kill < 4K.
Iz I ",,118 I

The Boutroux-Cartan lemma asserts that

outside exceptional disks with sum of diameters H.
Take

81

(11.14)

log H = log 4 -+- 2 -+- (I0(9)a + 2K,

so that, by (11.11),

U __ 1
~ S'

~ log 1 X(uea+iO) I :? I

for some suitable value of a such that

(I eI ,~ 7T), (11.15)

u < ueO < 2u -+- 4e2 i(lO/9)a-12\

and therefore

o < a < 2 -+- (10(9)0: -+- 2K + log 34 < 5.6 +- (10(9)0: = a l .

(11.16)
Hence (11.13) yields

1 g(ue2c lie)1 8(- log 2 + 2al) < 8(11 + 3et)

By (11.12) and (11.15)

(I e 1 ~C; -3
7T

). (11.17)
- y.

(11.18)

In view of (11.18), Lemma 10.1 is immediately applicable to g(z) with
c = 3y/2.

M1 = 8(11 + 30:) >- I, /1 = 4K, (11.19)

B -= exp(ca) -'-- exp(-ca) - 1

< exp(ca) < exp eJ (6 + I~ 0:)) < exp(y(9 -+- 2ex)) = w. (11.20)

By (10.4), (11.19) and (11.20)

I ~ f3M1B < 4K{8(11 + 3cx)}w = 1. (11.21)
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[The last equality 111 (11.21) coincides with (38)]. We have thus obtained a
contradiction which shows the impossibility of (11.6). Hence

and Theorem 3 is proved.
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